Архiвна справа - определение. Что такое Архiвна справа
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Архiвна справа - определение

Никоновская книжная справа; Справщик
  • А. Д. Кившенко]], 1880.}}
  • Почаевской лавры]]. Красным контуром обведены места, которые надо было уже изменить, но этого не сделали.
Найдено результатов: 9
Архiвна справа      
("Архiвна спра́ва",)

журнал Центрального архивного управления УССР по вопросам теории и практики архивного дела. Издавался в Харькове в 1926-31. Вышла 21 книга (последние 6 - под названием "Радянський apxiв"). В 1932 объединён с "Бюллетенем" Центрального архивного управления УССР в журнале "Apxiв Радянської України" (1932-33, № 1-8).

Односторонний предел         
  • Функция из второго примера
Односторо́нний преде́л в математическом анализе — предел числовой функции, подразумевающий «приближение» к предельной точке с одной стороны. Такие пределы называют соответственно левосторо́нним преде́лом (или преде́лом сле́ва) и правосторо́нним преде́лом (преде́лом спра́ва).
Ԟ         
  • Алеутский алфавит из букваря 1846 года
БУКВА РАСШИРЕННОЙ КИРИЛЛИЦЫ
Ԟ (кириллица); Алеутская К
Ԟ, ԟ (К со штрихом справа, в Юникоде алеутская К) — буква расширенной кириллицы. Использовалась в алеутском алфавите, составленном православными миссионерами, где обозначала звук и являлась 6-й буквой по счёту.
Фашизм: критика справа         
Фашизм: критика справа () — политический трактат философа-традиционалиста и идеолога неофашизма Юлиуса Эволы, опубликован в 1964 году.
НЕПРЕРЫВНАЯ ФУНКЦИЯ         
  • right
НЕПРЕРЫВНАЯ ФУНКЦИЯ, ОБЛАСТИ ОПРЕДЕЛЕНИЯ И ЗНАЧЕНИЙ КОТОРОЙ - ПОДМНОЖЕСТВА ВЕЩЕСТВЕННЫХ ЧИСЕЛ
Непрерывные функции; Устранимый разрыв; Разрыв первого рода; Разрыв второго рода; Точка разрыва; Точки разрыва; По непрерывности; Непрерывность (математический анализ); Непрерывная числовая функция; Непрерывная числовая функция числового аргумента; Разрыва точка; Точка разрыва первого рода; Точка разрыва второго рода; Устранимая точка разрыва; Точка существенного разрыва; Существенный разрыв; Точка устранимого разрыва; Точка неустранимого разрыва; Неустранимый разрыв; Точка разрыва типа полюс; Полюс (точка разрыва); Точка разрыва типа скачок; Скачок (точка разрыва); Разрыв типа полюс; Полюс (разрыв); Разрыв типа скачок; Скачок (разрыв); Непрерывная слева функция; Непрерывная справа функция
функция, обладающая тем свойством, что ее значения сколь угодно мало изменяются с изменением аргумента, если только сами изменения аргумента достаточно малы. Функции, встречающиеся в различных разделах математики и ее приложений к естествознанию и технике, обычно являются непрерывными функциями, за исключением, возможно, отдельных значений аргумента, при которых функции "терпят разрыв".
Непрерывная функция         
  • right
НЕПРЕРЫВНАЯ ФУНКЦИЯ, ОБЛАСТИ ОПРЕДЕЛЕНИЯ И ЗНАЧЕНИЙ КОТОРОЙ - ПОДМНОЖЕСТВА ВЕЩЕСТВЕННЫХ ЧИСЕЛ
Непрерывные функции; Устранимый разрыв; Разрыв первого рода; Разрыв второго рода; Точка разрыва; Точки разрыва; По непрерывности; Непрерывность (математический анализ); Непрерывная числовая функция; Непрерывная числовая функция числового аргумента; Разрыва точка; Точка разрыва первого рода; Точка разрыва второго рода; Устранимая точка разрыва; Точка существенного разрыва; Существенный разрыв; Точка устранимого разрыва; Точка неустранимого разрыва; Неустранимый разрыв; Точка разрыва типа полюс; Полюс (точка разрыва); Точка разрыва типа скачок; Скачок (точка разрыва); Разрыв типа полюс; Полюс (разрыв); Разрыв типа скачок; Скачок (разрыв); Непрерывная слева функция; Непрерывная справа функция

Функция, получающая бесконечно малые приращения при бесконечно малых приращениях аргумента. Однозначная функция f (x) называется непрерывной при значении аргумента x0, если для всех значений аргумента х, отличающихся достаточно мало от x0, значения функции f (x) отличаются сколь угодно мало от её значения f (x0). Точнее, функция f (х) называется непрерывной при значении аргумента x0 (или, как говорят, в точке x0), если каково бы ни было ε > 0, можно указать такое δ > 0, что при |х - х0| < δ будет выполняться неравенство |f (x) - f (x0)| < ε. Это определение равносильно следующему: функция f (x) непрерывна в точке x0, если при х, стремящемся к x0, значение функции f (x) стремится к пределу f (x0). Если все условия, указанные в определении Н. ф., выполняются только при хх0 или только при х х0, то функция называется, соответственно, непрерывной справа или слева в точке x0. Функция f (x) называется непрерывной н а отрезке [а, b], если она непрерывна в каждой точке х при а < х < b и, кроме того, в точке а непрерывна справа, а в точке b - слева.

Понятию Н. ф. противопоставляется понятие разрывной функции (См. Разрывные функции). Одна и та же функция может быть непрерывной для одних и разрывной для других значений аргумента. Так, дробная часть числа х [её принято обозначать через (х)], например

является функцией разрывной при любом целом значении и непрерывной при всех других значениях (рис. 1), причём в целочисленных точках она непрерывна справа.

Простейшими функциями переменного х, непрерывными при всяком значении x, являются многочлены, синус (у = sin x), косинус (у = cos x), показательная функция (у = ax, где а - положительное число). Сумма, разность и произведение Н. ф. снова дают Н. ф. Частное двух Н. ф. также есть Н. ф., за исключением тех значений х, для которых знаменатель обращается в нуль (так как в таких точках рассматриваемое частное не определено). Например,

есть Н. ф. для всех значений х, кроме нечётных кратных π/2, при которых cosх обращается в нуль.

Н. ф. обладают многими важными свойствами, которыми и объясняется огромное значение этих функций в математике и её приложениях. Одно из важнейших свойств выражается следующей теоремой: для всякой функции, непрерывной на отрезке [а, b] можно найти многочлен, значения которого отличаются на этом отрезке от значений функции менее чем на произвольно малое, наперёд заданное число (теорема о приближении Н. ф. многочленами). Справедлива также и обратная теорема: всякая функция, которую на некотором отрезке можно с произвольной степенью точности заменить многочленом, непрерывна на этом отрезке.

Функция, непрерывная на отрезке, ограничена на нём и достигает на этом отрезке наибольшего и наименьшего значения (см. Наибольшее и наименьшее значения функций (См. Наибольшее и наименьшее значения функции)). Кроме того, она принимает на этом отрезке все значения, лежащие между её наименьшим и наибольшим значениями. Функции, непрерывные на отрезке, обладают свойством равномерной непрерывности (См. Равномерная непрерывность). Всякая функция, непрерывная на некотором отрезке, интегрируема на нём, т. е. является производной другой Н. ф. Однако не всякая Н. ф. сама имеет производную. Геометрически это означает, что график Н. ф. не обязательно обладает в каждой точке определённым направлением (касательной); это может произойти, например, потому, что график имеет угловую точку (рис.2, функция у = |x|), или потому, что он совершает в любой близости точки О бесконечно много колебаний между двумя пересекающимися прямыми (рис. 3, функция

при х ≠ 0 и y = 0 при x = 0).

Существуют Н. ф., не имеющие производной ни в одной точке (первый пример такого рода был найден Б. Больцано). Представление о графике подобной функции даёт рис. 4, где изображены первые этапы построения, состоящего в неограниченно продолжающейся замене средней трети каждого прямолинейного отрезка двузвенными ломаными; соотношения длин подбираются так, чтобы в пределе получить Н. ф.

Функция F (x, у, z,...) нескольких переменных, определённая в некоторой окрестности точки (x0, y0, z0,...), называется непрерывной в этой точке, если для любого ε > 0 можно указать такое δ > О, что при одновременном выполнении неравенств: |x - x0| < δ, |у - у0| < δ, |z - z0| < δ,... выполняется также и неравенство:

IF (x, у, z,...) - F (x0, y0, z0,...)| < ε.

Такая функция будет непрерывной по отношению к каждому аргументу в отдельности (если остальным аргументам приданы определённые числовые значения). Обратное, однако, неверно: функция F (x:, у, z,...), непрерывная по каждому аргументу в отдельности, может и не быть Н. ф. этих аргументов. Простейший пример этого даёт функция F (x, у), равная xy/(x2 + y2), если x2 + y2 ≠ 0, и равная 0 при x = у = 0. Она непрерывна по x при любом фиксированном значении y по y - при любом фиксированном значении х. В частности, она непрерывна по x при у = 0 и по y при x = 0. Если же положить, например, у = х ≠ 0, то значение функции будет оставаться равным x2/(x2 + y2) = 1/2, т. е. нельзя будет указать такого числа δ > 0, чтобы при одновременном выполнении неравенств |х| < δ, |у| < δ выполнялось неравенство |ху/(х2 + y2)| < ε. На Н. ф. нескольких переменных распространяются все основные теоремы, относящиеся к Н. ф. одного переменного.

Лит.: Хинчин А. Я., Краткий курс математического анализа, М., 1953; Кудрявцев Л. Д., Математический анализ, т. 1, М., 1970.

Рис. 1 к ст. Непрерывная функция.

Рис. 2 к ст. Непрерывная функция.

Рис. 3 к ст. Непрерывная функция.

Рис. 4 к ст. Непрерывная функция.

РАЗРЫВА ТОЧКА         
  • right
НЕПРЕРЫВНАЯ ФУНКЦИЯ, ОБЛАСТИ ОПРЕДЕЛЕНИЯ И ЗНАЧЕНИЙ КОТОРОЙ - ПОДМНОЖЕСТВА ВЕЩЕСТВЕННЫХ ЧИСЕЛ
Непрерывные функции; Устранимый разрыв; Разрыв первого рода; Разрыв второго рода; Точка разрыва; Точки разрыва; По непрерывности; Непрерывность (математический анализ); Непрерывная числовая функция; Непрерывная числовая функция числового аргумента; Разрыва точка; Точка разрыва первого рода; Точка разрыва второго рода; Устранимая точка разрыва; Точка существенного разрыва; Существенный разрыв; Точка устранимого разрыва; Точка неустранимого разрыва; Неустранимый разрыв; Точка разрыва типа полюс; Полюс (точка разрыва); Точка разрыва типа скачок; Скачок (точка разрыва); Разрыв типа полюс; Полюс (разрыв); Разрыв типа скачок; Скачок (разрыв); Непрерывная слева функция; Непрерывная справа функция
значение аргумента, при котором нарушается непрерывность функции. См. Непрерывная функция, Разрывная функция.
Разрыва точка         
  • right
НЕПРЕРЫВНАЯ ФУНКЦИЯ, ОБЛАСТИ ОПРЕДЕЛЕНИЯ И ЗНАЧЕНИЙ КОТОРОЙ - ПОДМНОЖЕСТВА ВЕЩЕСТВЕННЫХ ЧИСЕЛ
Непрерывные функции; Устранимый разрыв; Разрыв первого рода; Разрыв второго рода; Точка разрыва; Точки разрыва; По непрерывности; Непрерывность (математический анализ); Непрерывная числовая функция; Непрерывная числовая функция числового аргумента; Разрыва точка; Точка разрыва первого рода; Точка разрыва второго рода; Устранимая точка разрыва; Точка существенного разрыва; Существенный разрыв; Точка устранимого разрыва; Точка неустранимого разрыва; Неустранимый разрыв; Точка разрыва типа полюс; Полюс (точка разрыва); Точка разрыва типа скачок; Скачок (точка разрыва); Разрыв типа полюс; Полюс (разрыв); Разрыв типа скачок; Скачок (разрыв); Непрерывная слева функция; Непрерывная справа функция

значение аргумента, при котором нарушается непрерывность функции (см. Непрерывная функция). В простейших случаях нарушение непрерывности в некоторой точке а происходит так, что существуют пределы

при стремлении x к а справа и слева, но хотя бы один из этих пределов отличен от f (a). В этом случае а называют Р. т. 1-го рода. Если при этом f (a + 0) = f (a -0), то разрыв называется устранимым, так как функция f (x) становится непрерывной в точке а, если положить f (a) = f (a + 0) = f (a - 0). Например, точка а = 0 является точкой устранимого разрыва для функции f (x) = при х 0 и f (0) = 0, так как для восстановления непрерывности достаточно положить f (0) = 1. Если же скачок δ = f (a +0) - f (a - 0) функции f (x) в точке а отличен от нуля, то при любом определении значения f (a) точка а остаётся Р. т. Примером такой Р. т. служит точка а = 0 для функции f (x) = arctg (в этом случае в самой точке а функция может оставаться неопределённой). Р. т. 1-го рода называется правильной, если

Если хотя бы один из односторонних пределов не существует, то а называется Р. т. 2-го рода [примеры: точка а = 2 для функции , точка а = 0 для функции ].

Непрерывная функция         
  • right
НЕПРЕРЫВНАЯ ФУНКЦИЯ, ОБЛАСТИ ОПРЕДЕЛЕНИЯ И ЗНАЧЕНИЙ КОТОРОЙ - ПОДМНОЖЕСТВА ВЕЩЕСТВЕННЫХ ЧИСЕЛ
Непрерывные функции; Устранимый разрыв; Разрыв первого рода; Разрыв второго рода; Точка разрыва; Точки разрыва; По непрерывности; Непрерывность (математический анализ); Непрерывная числовая функция; Непрерывная числовая функция числового аргумента; Разрыва точка; Точка разрыва первого рода; Точка разрыва второго рода; Устранимая точка разрыва; Точка существенного разрыва; Существенный разрыв; Точка устранимого разрыва; Точка неустранимого разрыва; Неустранимый разрыв; Точка разрыва типа полюс; Полюс (точка разрыва); Точка разрыва типа скачок; Скачок (точка разрыва); Разрыв типа полюс; Полюс (разрыв); Разрыв типа скачок; Скачок (разрыв); Непрерывная слева функция; Непрерывная справа функция
Непрерывная функция — функция, которая меняется без мгновенных «скачков» (называемых разрывами), то есть такая, малые изменения аргумента которой приводят к малым изменениям значения функции.

Википедия

Книжная справа

Кни́жная спра́ва в Русском царстве в середине XVII века — деятельность в Русской церкви по редактированию текстов переводов богослужебных книг в 1640—1660-е годы. Наиболее важные правки в редакции текстов (наряду с рядом иных богослужебных изменений) были официально приняты при царе Алексее Михайловиче и Московском патриархе Никоне (отсюда распространённое название «никоновская книжная справа»). Несогласие с этими изменениями среди части Церкви послужило одной из причин раскола Русской церкви. В конце XVII века книжная справа практически прекратилась, и с тех пор богослужебные книги Московского патриархата переиздаются без изменений, сохраняя даже свои технические ошибки.

Что такое Архiвна спр<font color="red">а</font>ва - определение